

Is modern logic non-aristotelian?
pp. 19-41
in: Vladimir Markin, Dmitry Zaitsev (eds), The logical legacy of Nikolai Vasiliev and modern logic, Berlin, Springer, 2017Abstract
In this paper we examine up to which point Modern logic can be qualified as non-Aristotelian. After clarifying the difference between logic as reasoning and logic as a theory of reasoning, we compare syllogistic with propositional and first-order logic. We touch the question of formal validity, variable and mathematization and we point out that Gentzen's cut-elimination theorem can be seen as the rejection of the central mechanism of syllogistic – the cut-rule having been first conceived as a modus Barbara by Hertz. We then examine the non-Aristotelian aspect of some non-classical logics, in particular paraconsistent logic. We argue that a paraconsistent negation can be seen as neo-Aristotelian since it corresponds to the notion of subcontrary in Boethius' square of opposition. We end by examining if the comparison promoted by Vasiliev between non-Aristotelian logic and non-Euclidian geometry makes sense.